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(5)] was found to provide only marginal, if any,
improvement in the B estimate, and to have a number
of drawbacks. The concept of Debye-curve inflexion
points is introduced and a straightforward and
relatively robust method for improving the least-
squares process, based on predictable features of a
Debye curve, is described. Values of B estimated by the
inflexion-point method are, on average, 10% better
than those calculated by conventional methods.

The authors wish to acknowledge the assistance of
the Australian Research Grants Committee (Grant:
C7915302) during the tenure of this work.
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Abstract

A method for calculating the expected errors in | E,l
values is outlined. It is based on the precision of the
measured data and the Wilson-plot parameters: and
allows for errors arising from the use of the profile
scaling function and/or the index rescaling procedure in
the normalization scheme. Six refined structures are
used to test the estimated errors in | E} | against values
deduced from a comparison with the ‘true’ normalized
structure factor |&1.

+ Deceased 27 December 1981.
0567-7394/82/050598-11%01.00

Introduction

One of the most serious obstacles to structure solution
by statistical invariant methods is the sensitivity of all
phasing procedures to errors in the initial phase
relationships. The generation of a single incorrect phase
in the early stages of a phasing procedure can often
result in the failure of the entire process. For this reason
computer programs place a strong emphasis on the
choice of initial starting phases and on the order in
which the invariants are processed.

There are a number of different approaches to the
selection of starting phases but all of them depend on
one fundamental quantity, namely, the magnitude of

© 1982 International Union of Crystallography
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the normalized structure factor | E,l. It is therefore of
particular concern that the average precision of
estimated |E,| values from existing computer pro-
grams is low (Hall & Subramanian, 1982). Never-
theless, the success ratio of direct-methods procedures
using these | E, | values is relatively high and this seems
to suggest that the precision of |E,| values is not an
important factor in the application of structure-
invariant relationships. This conclusion, however, is
questionable because the sensitivity of phase
initialization procedures to relatively small changes in
| E,| values is well known. Changes in | E, | values of a
few percent can cause the structure-invariant relation-
ships to be processed in an entirely different order; or,
rather, the phasing process to follow a different ‘phase
path’. Fortunately, more than one phase path can lead
to a correct solution. In fact, the success of the
‘multi-solution’ approach employed in many phasing
procedures relies on the variations in the phase path
caused by a permutation of phases. A multi-solution
procedure repeats the phase generation process for
each permutation of the starting phases, and this has
the effect of buffering the phasing process against the
need to identify the most reliable phase path. It should
be remembered, however, that much of this repetition is
also necessary because of the fragility of the initial
phase selection process itself, and a consequent need to
increase the number of starting phases.

The reliability of structure-invariant relationships
decreases as a function of the atomic content of the unit
cell. For structures with molecular weights in excess of
about 750 daltons, the average reliability of phase
relationships decreases to the point where the overall
effectiveness and the practicality of existing multi-
solution procedures become seriously limited. In these
cases it is particularly important that the Monte Carlo
aspects of the multi-solution approach are minimized,
and that a more rigorous treatment of phase probabilities
is pursued. Subramanian & Hall (1982) have shown
that improved estimates of |E,| provide commensurate
improvements in the reliability of phase relationships. It
follows that if a measure of the precision of each | Ej,|
value in terms of its expected error can be obtained, this
should lead to a more correct estimate of the phase
probability. At the very least it will provide a better
statistical foundation for the crucial phase selection
process.

Measured errors in | E, | estimates

The study of normalization scaling functions by Ladd
(1978) and Subramanian & Hall (1982) highlight the
importance of the calculated ‘true’ normalized structure
factor | &, | as a measure of the precision of estimated
|Eyl values. These studies show that | &,| values provide
a measure for assessing the errors in the different
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Table 1. Test structures

R=2HF,I| —IFJ|/XIF,.
B is the overall temperature factor.

Space R _
Formula  group value B(A? s, Reference
BEKA4 CyuH,N,0, PI 0055 4.5 024 (a)
CANON2 C,H,O0,  P2/n 0.058 3.8 024  (h)
ANTH! C,H,O,  P2/c 0.034 4.5 036 (a)
CORT  C,Hy,O,  P2,2,2,0-058 3.3 032 (o)
K22BR  Cy,HuO,  Iba2 0.049 4.8 022 (a)
KCPP  C,H,KO, Pcab 0.042 3.2 036 ()

References: (a) Skelton & White (1981); (b) Hall, Raston &
White (1978); (c) Declercq, Germain & Van Meerssche (1972).

estimates of 1E,l, and their relative dependence on
parameters such as s2, |&,], and | Fyl. In this study the
values of 1&}| and |E,| are compared for six refined
structures (see Table 1), and are used to estimate the
errors inherent in each estimate of | E} |.

Fig. 1 displays the variation of |&,| and |Ey|, with s?
for the test structures. In these plots the data are
averaged into 41 ranges between 0-0 and s2,,, and have
been overlapped to ensure that a minimum of 200
reflections contributed to the mid-range. The average
difference between 1&| and |E,l,, 4E,, is shown as a
function of s, |Fyl, and 1&,! in Figs. 2(a), 3(a) and
4(a), respectively. All plots in this study were prepared
using the program ESCAN (Hall & Subramanian, 1980).

The estimated |E,! values contain error con-
tributions from at least three main sources; (1) the
systematic difference between the mean |&;! and the
mean |E,l; (2) the mean random error of 1&,| about the
mean |&,l; and (3) the mean random error of |Eyl
about the mean | E;l. The mean error for the ith range,
AE;, may be expressed as

AE; =|1&,1 — |E}|+ (a*|&}| + o’ E;)V2 (1)
The variation of the systematic error difference ||&,| —
|E;l| with s* may be gauged from Fig. 1. This shows
relatively small differences between &, and the
estimates derived from the exponential scale k exp (Bs?)
with overall and index rescaling (1 E,l, and | E}1;). The
differences for the E values calculated using the profile
scale (I1E,l, and I|E,l,) are, however, a significant
fraction of 4E, as a function of both s? and 1&,!.

It is evident from Figs. 1 and 2 that the principal
contributors to the AF values, however, are the random
errors associated with the distribution of | E,| about E;
and |&,| about |&,1. Figs. 2(a) and 4(a) indicate that the
magnitude of the random errors increases both as a
function of s? and as a function of |&,! itself. Figs. 5(a)
and 6(a) show the variation of 4E,/IE,| with s? and
&, and serve to illustrate the variation of the errors as
fractional differences.
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Estimated errors of | Ey |

The estimation of errors in a normalized structure
factor must take into account both the errors in the
parameters used in the calculation of [E,! and the
uncertainty in the Wilson-plot process itself. The
normalized structure factor is calculated from the
expression

E |F" k exp (Bs?)
SV TN
Assuming that the expectation value (1 F3!) is derived

directly from the random-atom scattering term e f
then the variance of | E,| may be expressed as

(2)

o?lF,| o?exp(Bs?)
| F2] * exp (2Bs?)
202(k, exp (Bs?)]
k exp (Bs?) }

o2 E,| = |E}I

3
where the o[k exp(Bs?)] is the covariance of k and
exp (Bs?). The third term in (3) may be expanded as

o2 exp (Bs?) = s? exp (Bs?) ¢’B. C))

Similarly, the covariance term is expanded in terms of
the correlation coefficient as

GZ(P’ Q) = F(P, Q) O-PO'Q- (5)

g J ....... R
L [ b o L
0.9, %o 0.9
523 3
$ o 530°
0. 896%-3 3 e I O.ver o o L
g: 3ado 00 o
13_o °
4 § 2 44 °
0. 90} gg sa28a’a caaaataadtanta 4 se* } owd eta22as ? 1 °!?:’°
. ; .‘asgao 444aa L] 4 0‘3 ; 3‘ 2?2 2 °f 3:‘ ‘x‘ -
4« a4 a3l 3 03 o 2 440 & 4a ° 1y at%2
3031 ao 93 o & 44 22 22 3 22
.73 3 3 o oo:' o7 ‘e 3 003,000 $4% . 404; '
4
° 3 2 400 _3 3
o:!g: o3 31 \l::lb 2 2‘; siaaaa
3000 11 410 1 03
o 33a’ O.64r4 4 ? 33 1,00
3. ° 990 0
o 1_o0 ?
.96 0. 34 3702
131
L___-J——b—d X %
©0.006 0,633 o - o1 0.006 G 037 v 0.100 T 191 0. 163 T 1% T.
(@ (b)
......................................................................................................... g...-o::::::‘.
o.9% o.9% a 0,150 8
3 as 43 n0§ I ] °
o9y 1 3 goo 0. 8Ot 42 433 244 4 44 4443 2
3 ° 3 2 2 4“2 4 a2 2 2 as
. ¥ 323 331132 2 S R 43743 4z
. ° 3 °, it 1 2 3 g
0. 80t % L 0 °
4 2 -
. a3z . « 3422 4 4 i H °3? 31 a ]
3 2 1 o_300
. . ‘e 44 430 4 3 a1 3 3
3 4 4 402 . 4 as 1404 1, 13 ? 9322
0. 73 3323 9 _ 4 aa o4 ) 3 F o7t 23 a
11 4 2 3 33 1
3 1 o 3
0. o4 . 2a o? olu
. a [ ° 0. 44
°
3a 3
0. 344 b 0.3et
o. T 054 X 14 Q) X o o. T 047 ; 126 166 X)) T.345 o.
(©) @
.................................. Y T CANLLLEEER e e
3o
a 3 33 'J
o.95 L] o.es}
° 3
3 4 . 2 03 44 4 233,
.3 saaa . ) s - o.00f 1 3
oo 4 . cg ‘s X cYess e N N
a2 .4 o0dglas 4 o0 . 9% 1 “23°
°o 3 033 233 4488488 4a
A 3 - o.00f o 4, 444 4 210 22
0. 89 2%a ag:o oo I ge4s 3443;2:3442' §334aa*? 2
H 2 3 3a ao 0000000, 0 0
36%0 2 - 0. 73 30 o3 3o 0 00
.73 32,7 L2 - 8:0 °o" "3 3,
as 280
° 233°
0. b4t [ O &4
4
2
0. 3¢ b 0.3
o. 0.037 0. 1 0. 0. 0! o. o.
(e) 0))]

Fig. 1. Plots of |#y! and |Eyl, versus s (horizontal axis) for the structures (@) BEKA4, (b) CANON2, () ANTHI, (d) CORT,
(e) K22BR and (f) KCPP. The complete description of 1&,! (plotted as 0) and the four 1Eyl, values (plotted as 1. 2. 3. 4) is given by

Subramanian & Hall (1982).
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Equations (4) and (5) having been substituted in (3),
the variance becomes

o?|F,| o’k
a?lEh|=|E§|{—“—+

4 42
Fal " +s*0‘B

2

28 k, B) ockoB 6
+Tr(,)oo}. 6)

The variance equation (6) contains the parameters s,
{F,| and oF, derived from the measurement process; k,
B and |E,| derived from the Wilson-plot calculation,
and ok, 0B and o(k, B) which can be obtained from the
Wilson-plot least-squares procedure (vide infra).

The essential relationships on which the Wilson-plot
process is based may be written as

| F2I
D
The plot of In (I F2I/{I Fi1)) versus s? is a straight line
with —2B as the slope and —2 In (k) as the intercept at

s? = 0. In practice the slope and intercept are obtained
by the application of linear least squares to the y? term,

In =—21Ink — 2Bs2 @)

£=Y w(R;~C— S5}, ®)

so that it is a minimum for the slope S and the intercept
C. R, is the logarithm of the ratio of | FZI and {IFZ), n
is the number of data points in the summation and w; is
the least-squares weight of each point.

Estimates for the variances ¢*C, ¢S, ¢%(C,S) and
the correlation coefficient r(C, S) are available directly
from the least-squares process (see Appendix for
details). Their relationships to the variances in (6) are
as follows:

0*C=0%*2Ink)

= 20%k/k? %)
0’S = ¢2(2B)
=20’B (10)

and
c%(C,S)=r(C,S)oCoS

20k
=r(C,S)TaB. (rn

Substituting (9), (10) and (11) into (4), and assuming
that the linear correlation factor r(C, S) is equivalent to
rlk, exp (Bs?)l, one obtains
o?lF,l o*C s*o’S
+ +
| F2I 2 2
+ 52 0%(C, S)}.

0E,| = IEE,I{

(12)
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Profile scale error contribution

The variance o*| E, | expressed by (12) excludes the
non-random errors of the type discussed in connection
with the measured errors derived from (1). The
derivation of the variance o?lE,|l ignores any
systematic differences between the estimated | E, | value
and the true normalized structure factor. This is valid
only if the mean |E,! is the same as the mean |&,| for
all values of s%, IF,| and 1&,l. The plots in Fig. 1
indicate that this is a reasonable approach for the
estimate calculated from the exponential scaling func-
tion and overall rescale, |E,l,; and may also be
legitimate for the estimate based on the exponential
scale and index rescale, | Eyl;, despite the presence of
non-random errors due to the index rescale (vide infra).
Fig. 1 also clearly shows that there is a significant
difference between the mean &, and the estimates
based on the profile scale, | Eyl, and |E,l,. These
systematic differences must be included in any
estimation of errors in | E, |. The error contribution due
to the profile scaling function K(s) can be evaluated
from its difference from the linear scale as

A* K(s) = [k exp (Bs?) — K(s)]% (13)

Index rescale error contribution

The analysis of overall agreement between the
estimated |E,l, values and calculated &} values
indicates that the index rescaling is also a potential
source of systematic error. This error will be smaller
than the profile scale contribution except in special
cases. The non-random errors due to index rescaling
will also tend to be less conspicuous than errors from
other sources due to its dependency on combinations of
h, k, [ rather than parameters such as s%, | Fy,| or 1£,].

A suitable approximation of the systematic errors
due to the index rescale value K(kk/) may be calculated
from its difference with the overall rescale value k,

A*K(hkl) = [k — K(hk)]2 (14)

Comparison of measured and estimated errors

The difference between the calculated normalized
structure factor 1&,| and the estimated normalized
structure factor | E,| provides information on both the
random and systematic errors in the various estimates
of |E,l. The use of (1) for this purpose presupposes
that |1&,! is a reasonable measure of the ‘true’
normalized structure factor and that the random errors
associated with 1&,| are relatively small. A study of
Subramanian & Hall (1982) on the reliability of &1
and |E,| in phasing procedures supports this and it is
reasonable to assume that the contribution of o?| &, |
to (1) is relatively small at the level of refinement reached
for the test structures (see Table 1). The plots of the
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AE; against s?, |Fy| and &, for the test structures therefore to be a good representation of the errors in
shown in Figs. 2(a), 3(a) and 4(a),* are expected the different | E,| estimates. The fractional differences
AE,/1&,] provide further information about the
* Plots for ANTH 1 and K22BR similar to those in Figs. 2. 3,4  expected error distribution (see Figs. 5a and 6a).
and 6 have been deposited with the British Library Lending These estimated errors in |E,| values have been
e .. . . h
Division as Supplementary Publication No. SUP 36644 (5 pp). ;o) lated from the standard deviations of measured

Copies may be obtained through The Executive Secretary. .
International Union of Crystallography, 5 Abbey Square, Chester data and from the Wilson-plot parameters [see (12)].
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have been deposited.) The measured 4E, is||#,| — | E, || and estimated AE, is calculated using (13). (14) and (15).



S. R. HALL AND V. SUBRAMANIAN 603

rescale terms have been added when appropriate. Plots
of the estimated errors are shown in Figs. 2(b), 3(b) and
4(b) as a function of s2, |F,| and |&,l, respectively.
Plots of estimated fractional errors are shown in Figs.
5(b) and 6(b).

The variations of the mean measured and estimated
errors with s? are shown in Fig. 2. For all test structures

the measured error tends to be larger because of the
contributions from ¢21&,|. Apart from this the main
features of these plots match closely, and the relative
variations among different estimates in the two plots
are also similar.

In Fig. 3 the distribution of measured and estimated
errors is plotted against | F,,|. Once again their general

0.4 o.43 [
CANON 2
o 0.9
as .
©. 30 3 | o.2d ssaa
s ni . a4 _aa
o ;‘n.o'nn;;:;l aa.iaii’aiii! 't 0.2 ““‘ggg’g’g’i;"
11 . 24 F
3¢ ?xnaaaa:x?ggia::““‘ . eeta?221 11
o1feanat? 1111 t1111 1 e’ 32 s 11ttt
. 0. 14 et} gg:!! 11 1 9
ETEEES PR
0. 08 443221111
ood 44,338 f701
4321
- L = 1 L L 1 ' L 1 1 1 1 1 X L bl
o.a9
o.as
CORT ]
0. u 3 o.ae
4 4
o-3r 2 ¢ 0.20 s 4 o
.
0. 23] . as_ 2
: 4444480 a_ -1 .23 sssa2a? 2
‘54::23 3824 2 2 ;éﬁgzzaza 3 2
oad*I113328%,,¢ 37372233222 Y
1112 0. 14 111 1 1
2, 2 s 1111 1
3 1 1o
0. o8} 0. 06f4
- L L 1 L 3 L L L L 1 1 L 1 1 P 1
0.3t
o.43}0
KCPP
o.aaf 0.9
R 2
0.9 e A . .20
a8
33 4assaas . 2 ot
o= 33 23??“3323233‘. . 33,4 2 ’::’.;. [ %3 444 ‘44:44'4. “s, ':a‘g s [
o1 ', 23, 4 i3 s 3 ’2353:::::::133;33 404“u‘; 4;:22: aa?
] 111 3,2 3 0146 T1111 23223 i 2 2
“‘,,:I“’:"\' 223 3 _.1%, t1ie11 1 03333, 3 “-7%3:3
111111
o.0s !ll‘l 11 22 .06 Tlyt,tt LI
i 11,111 -
- L 1 1 .3 3 L 1 P x 1 1 1 M
0. &3] 0. 4]
BEKA 4
0.3 o. 30} [
0. 30r 0. 30}
sa4aa 4 a4 a as
O R A N L T . PEPEREEETLELLEDY
o :?Gg:a’??:: ;; o as’ 333 3 3443.
1 4 4 4424 42 ?a:laa;:l 3:::3? 4424 E
0 14 199, .4.88.2,24 43520 IEREEREEE NN 3
1111 13,2 o014 aaadal ?1????-‘;*:‘:?71
1 443331 '
©. os4 L ooy’ f
L 1 1 1 1 1 1 : 1 1 L 1 1 1 z 3 L
0 50 |F| 100 0 50 |F| 100
(@) . (b)
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similarity is obvious. However, there is a lack of
correspondence in the plots of CANONZ2, especially at
low {F,l values. This is due to the incorrectly low
values of ol which give rise to poor values of
olF,I/IF,| even after the application of limited
Bayesian statistics (Hall & Subramanian, 1982). A
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similar difference between measured and estimated
errors occurs for the CORT data, where no ol F,l
values were available for inclusion in (12).

The plot of measured and estimated errors as a
function of 1&,| is shown in Fig. 4. The good agreement
between the plots is evident, with some minor dif-
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Fig. 4. Plots of (a) the measured 4E, and (b) the estimated 4E, versus 1&| for four of the test structures. (Plots for ANTH! and K22BR
have been deposited.)
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ferences occurring at low 1&}| values. It is probably due  emphasize the dependence of the estimated errors on
to the contribution of 6%1&,| to the measured errors. the precision of the ol F,,|/| F, | values (shown in Fig. 5b

In Figs. 5 and 6 the measured and estimated as 0). For CANON2 and CORT the olF,I/IF,| values
JSractional errors are compared in terms of s> and 1&,!, are underestimated and unavailable, respectively, and
respectively. Only the plots for the test structures this has a predictable effect on the estimated ¢l E,! in
CANON?2, CORT and KCPP are illustrated in Fig. 5 both cases. For KCPP and the other three data sets.
because of space considerations. These were selected to  the ol F,l/IF,| values are more reliable and the
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agreement between measured and estimated errors, as a
function of s?, is excellent. It is also worthy of note that
despite the lack of the reliable values of ¢l Fyl/1 Fy | for
CANON?2 and CORT the errors arising from other
sources still produce the correct form of the error

distribution. There is no reason to doubt that should the
precise values of gl Fy,|/| F,| be available for these two
data sets the agreement would be equally good.

The same general observations may be made about
the fractional errors with respect to | &} (see Fig. 6).
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Data sets with reliable estimates of ¢! F,1/!F,! [shown
as 0 in (b)] show close agreement between measured
and estimated errors, especially for high 1&,| values.
This is important because it is the data with |&} values
above the threshold of about 1-5 that are used in
phasing procedures. Note that above 1-5 the average
fractional errors remain relatively constant — though it
is clear from the other plots that errors in individual
| E,| values may vary significantly with s?and | F, |.

Conclusions

A method for calculating the expected errors for
different |E,! values is proposed through the ap-
plication of (12), (13) and (14). The random error given
by (12) relies on experimental estimates of ¢! F,!/| F,|
and on the least-squares parameters from the Wilson
plot, while the estimates of systematic errors given by
(13) and (14) depend on deviations of profile and index
scales from the appropriate mean scale factors. Errors
estimated in this way are in good agreement with
observed errors derived from the difference between
&yl and |Eyl. This has been verified by comparing the
estimated and the measured errors as functions of s2,
|F,I and |E,l. These comparisons also provide
information on the variation of errors for the different
methods of calculating | E,| values. This study also
confirms the observations made by Subramanian &
Hall (1982) concerning the relative reliabilities of
different | E,| values. It is expected that the availability
of estimated errors for |E,| values prior to structure
solution will have important implications for structure-
invariant phasing procedures. The application of these
estimated errors to phasing procedures, and the
minimization of associated noise propagation during
phase extension process, are being studied.

The authors wish to acknowledge the assistance of
the Australian Research Grants Committee (Grant:
C7915302) during the tenure of this work. We are
indebted to Dr E. N. Maslen of this laboratory for
valuable suggestions on this work.

APPENDIX

In linear least squares the y* summation [see (8)] is
minimized with respect to the slope S and the intercept
C at s =0 so that

o S i (Ri— C— S57) =0 (A1)
“a‘“c.'—‘iwi i— C—0857)=0,

op

X S st (R,—C—Ss)=0.  (42)

oS
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Equations (A1) and (A42) can be rewritten as the
simultaneous equations

S wR;=C> w; + 8> w,;s? (43)

D w, R, ST=CYw;s]+ Sy w;si. (44)

(43) and (44) may be expressed in vector notation as

v a,, a C
( 1) _ 11 %12 ( ) (AS)
Uy a4y ay| \S
or simply
v =Ap. (46)
It follows that
p=Bv (A7)
where
b, b
:( 11 12) (A8)
bZI b22
a,,—a
=( 2 ”)/\A\ (49)
—ay ay
and
1Al = a,, ay; — a,; ay;. (A410)
From (A7), the intercept C is
C = (ayv, —a,v,/1Al, (A11)
and the slope S is
S = (a,, v, —a,, v,)/ AL (412)

The variance of each parameter may also be obtained
from the least-squares matrix B as

by x’
n—2"

glp; = (A413)

The variance of the intercept and the slope are therefore

b 72 2
o2C = nX _ an X (414)
n-—2 1Al (n —2)
b 72 2
oS = 2 X _ ap X s (A15)
n—2 IAl (n —2)
and
by a.. ¥
03(C,S) = nX X (416)

n—2 IAl(n=2)
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The value of the y? summation may be calculated from
the expression

¥*=C?a,, +2CSa;, + S*a,, — 2Cv, — 28v, + vy,

(A17)
where
v3:£wiR,?. (A18)
The correlation coefficient between C and S is
r(C, S) =by,/(by, b)) (419)
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Abstract

The modulated non-zero electron density distribution
that results from linear disorder of iodine chains in
systems of stacked planar organic molecules or
metallomacrocycles partially oxidized by iodine is
modeled by an integrable statistical distribution func-
tion. The contributions to the Bragg scattering of the
iodine disorder are fit in an excellent manner with the
use of at most two extra variables.

Introduction

Several highly conducting one-dimensional systems
have been prepared by partial oxidation with iodine of
planar organic molecules or metallomacrocycles (for a
review see Hoffman, Martinsen, Pace & Ibers, 1982).
These systems typically contain stacks of the oxidized
species surrounded by linear chains of polyiodide
anions that are disordered. The form of the iodine (e.g.
I,, I3, I5) can be elucidated spectroscopically either by
resonance Raman or Mossbauer methods (Marks,

0567-7394/82/050608-04$01.00

1978), and in several cases structural information on
the iodine species has been obtained by analysis of the
diffuse X-ray scattering that results from the disorder
(Endres, Keller, Meégnamisi-Béelombé, Moroni,
Pritzkow, Weiss & Comeés, 1976; Scaringe & Ibers,
1979; Schramm, Scaringe, Stojakovic, Hoffman, Ibers
& Marks, 1980). Here, for several systems containing
I7 we shall consider the effect of this disorder on the
Bragg scattering.

In the systems Ni(Pc)I* (Schramm et al., 1980),
Ni(tbp) (Martinsen, Pace, Phillips, Hoffman & Ibers,
1982) and M (bqd),l,.; (Endres, Keller & Weiss, 1975;
Brown, Kalina, McClure, Schultz, Ruby, Ibers, Kan-
newurf & Marks, 1979) the disorder of the I3 anions is
not severe, perhaps because the spacing between
macrocycles in the stack is short, less than 3-24 A. All
of the diffuse X-ray lines in these systems can be
indexed on the basis of a superlattice spacing that is

* Abbreviations used: bqd. 1.,2-benzoquinonedioximato: Pc.
phthalocyaninato; tbp. tetrabenzporphyrinato: omtbp, 1.4.5,8.,9.12.-
13.16-octamethyltetrabenzporphyrinato: tmp. 5.10,15.20-
tetramethylporphyrinato: ¢,DTP. tetraphenyldithiapyranylidene:
TTT. tetrathiatetracene.
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